MemoryDataset
kedro.io.MemoryDataset ¶
MemoryDataset(data=_EMPTY, copy_mode=None, metadata=None)
Bases: AbstractDataset
MemoryDataset
loads and saves data from/to an in-memory
Python object. The _EPHEMERAL
attribute is set to True to
indicate MemoryDataset's non-persistence.
Example: ::
>>> from kedro.io import MemoryDataset
>>> import pandas as pd
>>>
>>> data = pd.DataFrame({'col1': [1, 2], 'col2': [4, 5],
>>> 'col3': [5, 6]})
>>> dataset = MemoryDataset(data=data)
>>>
>>> loaded_data = dataset.load()
>>> assert loaded_data.equals(data)
>>>
>>> new_data = pd.DataFrame({'col1': [1, 2], 'col2': [4, 5]})
>>> dataset.save(new_data)
>>> reloaded_data = dataset.load()
>>> assert reloaded_data.equals(new_data)
Parameters:
-
data
(Any
, default:_EMPTY
) –Python object containing the data.
-
copy_mode
(str | None
, default:None
) –The copy mode used to copy the data. Possible values are: "deepcopy", "copy" and "assign". If not provided, it is inferred based on the data type.
-
metadata
(dict[str, Any] | None
, default:None
) –Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
Source code in kedro/io/memory_dataset.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
_describe ¶
_describe()
Source code in kedro/io/memory_dataset.py
80 81 82 83 84 85 |
|
_exists ¶
_exists()
Source code in kedro/io/memory_dataset.py
74 75 |
|
_release ¶
_release()
Source code in kedro/io/memory_dataset.py
77 78 |
|
load ¶
load()
Source code in kedro/io/memory_dataset.py
62 63 64 65 66 67 68 |
|
save ¶
save(data)
Source code in kedro/io/memory_dataset.py
70 71 72 |
|