AbstractRunner
kedro.runner.AbstractRunner ¶
AbstractRunner(is_async=False)
Bases: ABC
AbstractRunner
is the base class for all Pipeline
runner
implementations.
Parameters:
-
is_async
(bool
, default:False
) –If True, the node inputs and outputs are loaded and saved asynchronously with threads. Defaults to False.
Source code in kedro/runner/runner.py
44 45 46 47 48 49 50 51 52 53 54 |
|
_filter_pipeline_for_missing_outputs ¶
_filter_pipeline_for_missing_outputs(pipeline, catalog)
Filter pipeline to only include nodes that need to run.
Uses reverse topological order to determine which nodes need to run
Source code in kedro/runner/runner.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
_get_executor
abstractmethod
¶
_get_executor(max_workers)
Abstract method to provide the correct executor (e.g., ThreadPoolExecutor, ProcessPoolExecutor or None if running sequentially).
Source code in kedro/runner/runner.py
192 193 194 195 |
|
_get_required_workers_count ¶
_get_required_workers_count(pipeline)
Source code in kedro/runner/runner.py
378 379 |
|
_log_filtering_results ¶
_log_filtering_results(original_node_count, filtered_pipeline, all_nodes)
Log the results of pipeline filtering.
Source code in kedro/runner/runner.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
_raise_runtime_error
staticmethod
¶
_raise_runtime_error(todo_nodes, done_nodes, ready, done)
Source code in kedro/runner/runner.py
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
_release_datasets
staticmethod
¶
_release_datasets(node, catalog, load_counts, pipeline)
Decrement dataset load counts and release any datasets we've finished with
Source code in kedro/runner/runner.py
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
_run
abstractmethod
¶
_run(pipeline, catalog, hook_manager=None, run_id=None)
The abstract interface for running pipelines, assuming that the inputs have already been checked and normalized by run(). This contains the Common pipeline execution logic using an executor.
Parameters:
-
pipeline
(Pipeline
) –The
Pipeline
to run. -
catalog
(CatalogProtocol | SharedMemoryCatalogProtocol
) –An implemented instance of
CatalogProtocol
orSharedMemoryCatalogProtocol
from which to fetch data. -
hook_manager
(PluginManager | None
, default:None
) –The
PluginManager
to activate hooks. -
run_id
(str | None
, default:None
) –The id of the run.
Source code in kedro/runner/runner.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
_set_manager_datasets ¶
_set_manager_datasets(catalog)
Source code in kedro/runner/runner.py
372 373 374 375 376 |
|
_suggest_resume_scenario ¶
_suggest_resume_scenario(pipeline, done_nodes, catalog)
Suggest a command to the user to resume a run after it fails. The run should be started from the point closest to the failure for which persisted input exists.
Parameters:
-
pipeline
(Pipeline
) –the
Pipeline
of the run. -
done_nodes
(Iterable[Node]
) –the
Node
s that executed successfully. -
catalog
(CatalogProtocol | SharedMemoryCatalogProtocol
) –an implemented instance of
CatalogProtocol
orSharedMemoryCatalogProtocol
of the run.
Source code in kedro/runner/runner.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
_validate_catalog ¶
_validate_catalog(catalog)
Source code in kedro/runner/runner.py
362 363 364 365 366 |
|
_validate_max_workers
classmethod
¶
_validate_max_workers(max_workers)
Validates and returns the number of workers. Sets to os.cpu_count() or 1 if max_workers is None, and limits max_workers to 61 on Windows.
Parameters:
-
max_workers
(int | None
) –Desired number of workers. If None, defaults to os.cpu_count() or 1.
Returns:
-
int
–A valid number of workers to use.
Raises:
-
ValueError
–If max_workers is set and is not positive.
Source code in kedro/runner/runner.py
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
|
_validate_nodes ¶
_validate_nodes(node)
Source code in kedro/runner/runner.py
368 369 370 |
|
run ¶
run(pipeline, catalog, hook_manager=None, run_id=None, only_missing_outputs=False)
Run the Pipeline
using the datasets provided by catalog
and save results back to the same objects.
Parameters:
-
pipeline
(Pipeline
) –The
Pipeline
to run. -
catalog
(CatalogProtocol | SharedMemoryCatalogProtocol
) –An implemented instance of
CatalogProtocol
orSharedMemoryCatalogProtocol
from which to fetch data. -
hook_manager
(PluginManager | None
, default:None
) –The
PluginManager
to activate hooks. -
run_id
(str | None
, default:None
) –The id of the run.
-
only_missing_outputs
(bool
, default:False
) –Run only nodes with missing outputs.
Raises:
-
ValueError
–Raised when
Pipeline
inputs cannot be satisfied.
Returns:
-
dict[str, Any]
–Dictionary with pipeline outputs, where keys are dataset names
-
dict[str, Any]
–and values are dataset object.
Source code in kedro/runner/runner.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|